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A carefully designed procedure is presented to modify the piecewise constant strain field of
linear triangular FEM models, and to reconstruct a strain field with an adjustable parame-
ter a. A novel Galerkin-like weakform derived from the Hellinger–Reissner variational prin-
ciple is proposed for establishing the discretized system equations. The new weak form is
very simple, possesses the same good properties of the standard Galerkin weakform, and
works particularly well for strain construction methods. A superconvergent alpha finite
element method (SaFEM) is then formulated by using the constructed strain field and
the Galerkin-like weakform for solid mechanics problems. The implementation of the
SaFEM is straightforward and no additional parameters are used. We prove theoretically
and show numerically that the SaFEM always achieves more accurate and higher conver-
gence rate than the standard FEM of triangular elements (T3) and even more accurate than
the four-node quadrilateral elements (Q4) when the same sets of nodes are used. The
SaFEM can always produce both lower and upper bounds to the exact solution in the
energy norm for all elasticity problems by properly choosing an a. In addition, a prefera-
ble-a approach has also been devised to produce very accurate solutions for both displace-
ment and energy norms and a superconvergent rate in the energy error norm. Furthermore,
a model-based selective scheme is proposed to formulate a combined SaFEM/NS-FEM
model that handily overcomes the volumetric locking problems. Intensive numerical stud-
ies including singularity problems have been conducted to confirm the theory and proper-
ties of the SaFEM.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

The finite element method (FEM) has become a very powerful and reliable tool for numerical simulations in engineering
and science [1–3]. Commercial software packages are now widely used in engineering design of structural systems due to
their versatility for complicated geometries and non-linear problems. In practical applications, the lower-order linear trian-
gular element is preferred to many engineers due to its simplicity, efficiency, robustness, less demand on the smoothness of
the solution, and easy for adaptive mesh refinements for solutions of desired accuracy. However, the fully-compatible FEM
. All rights reserved.
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model using 3-node triangular element (T3) has certain inherent drawbacks: (1) overestimation of stiffness matrix [4,5]
especially for problems with locking behavior; (2) poor performance when distorted meshes are used; (3) poor accuracy
in the stress results. One of the attempts in improving the constant strain triangular element is to add an in-plane rotational
degree of freedom which was initially proposed by Allman [6]. Various improvements of formulations as well as numerical
techniques on the rotational degree of freedom have then been performed [7–11]. The concept of enhanced strains intro-
duced by Simo and Rifai [12] has been developed by many authors to improve the performance of low order finite elements
[10,13–18]. The assumed stress element [19] was also proposed to solve locking problems.

On the other front of the development, Liu et al. [20] has formulated the linear conforming point interpolation method
(LC-PIM) using PIM shape functions constructed with a set of small number of nodes chosen in a local support domain that
can overlap [21,22]. A generalized strain smoothing technique [5] has been proposed based on the strain smoothing tech-
nique [23]. The generalized strain smoothing technique forms a foundation of unified formulations for both incompatible
and compatible displacement methods. Because the node-based smoothing operation is used in the LC-PIM, it is also termed
as a node-based smoothed point interpolation method (NS-PIM). Introducing the strain smoothing operation into the finite
elements, the element-based smoothed finite element method (SFEM) [24] has also been formulated. The theoretical base of
SFEM was then established and proven in detail in [25,26]. The SFEM has also been developed for general n-sided polygonal
elements (nSFEM) [27], dynamic analyses [28], plate and shell analyses [29–32]. Strain smoothing has recently been coupled
to the extended finite element method (XFEM) [33–35] and partition of unity method [36,37] to solve fracture mechanics
problems in 2D continuum and plates, e.g. [38]. This coupling is very promising to create a flexible extended finite element
method (FleXFEM) [38].

Based on the idea of the NS-PIM and the SFEM, a node-based smoothed finite element method (NS-FEM) [39] for 2D solid
mechanics problems has been developed. It was shown that NS-PIM and NS-FEM work very well in solving the volumetric
locking problems. They are also less sensitive to mesh distortion, and achieve more accurate stress solutions when triangular
elements are used. Furthermore, both the NS-PIM and NS-FEM can provide an upper bound [39,40] to exact solution in the
strain energy for elasticity problems with non-zero external forces [41,42]. However, it is also found that both NS-PIM and
NS-FEM models can lead to spurious non-zero energy modes for dynamic problems, due to an ‘‘overly-soft” behavior that is
in contrary to the ‘‘overly-stiff” phenomenon of the standard compatible FEM (T3) [4,5]. The overly-soft behavior can be
overcome by using a stabilized technique in the nodal integration methods [43,44]. And an effective cure is to use the
edge-based smoothed finite element method (ES-FEM) [45] which possesses a very ‘‘close-to-exact” stiffness and has not
spurious non-zero energy modes. The ES-FEM therefore can give very accurate, stable and superconvergent solutions to both
static and dynamic problems.

The finite element methods with free parameters have been well known via previous contributions in [46–49]. An alpha
finite element method (aFEM) [50] using quadrilateral elements was recently formulated to obtain ‘‘nearly exact” or best
possible solution for a given problem by scaling the gradient of strains in the natural coordinates and Jacobian matrices with
a scaling factor a. The method is not variationally consistent but proven stable and convergent. The aFEM can produce
approximate solutions that are ‘‘very close to exact” solutions in the strain energy for all overestimation problems, and
the ‘‘best” possible solution to underestimation problems. An aFEM using triangular and tetrahedral elements for exact solu-
tion to mechanics problems has also been proposed [51]. Along with the idea of the aFEM [50], a variationally consistent
aFEM (VCaFEM) [52] has also been formulated by scaling only the gradient of strain in the physical coordinates, without
scaling the Jacobian matrix, and using the Hellinger–Reissner variational principle. The VCaFEM can produce both lower
and upper bounds to the exact solution in energy norm for all problems of elasticity by properly choosing the scaling factor
a. The important bound property is then used to device an exact-a approach for ultra-accurate solutions that are very close
to the exact solution in the energy norm. Furthermore, the VCaFEM can also perform well for problems with volumetric lock-
ing through the incorporation with a stabilization technique [53,54]. Following the idea of aFEM, a superconvergent point
interpolation method (SC-PIM) [55] using triangular meshes and the piecewise constant strain field has also been developed
for superconvergent solutions in meshfree methods [56–64].

In this paper, a superconvergent alpha finite element method (SaFEM) using triangular meshes is proposed. A strain field
is carefully constructed by combining the compatible strains and the averaged nodal strains with an adjustable factor a. A
novel variationally consistent Galerkin-like weak form for the SaFEM is derived from the Hellinger–Reissner variational prin-
ciple. Due to the particular way of the strain field constructed, the new Galerkin-like weak form is as simple as the Galerkin
weak form and the resultant stiffness matrix is symmetric. We prove theoretically and show numerically that the SaFEM is
much more accurate than the original FEM-T3 and even more accurate than the FEM-Q4 when the same sets of nodes are
used. The SaFEM can produce both lower and upper bounds to the exact solution in the energy norm for all elasticity prob-
lems by properly choosing an a. In addition, a preferable-a approach has also been devised for the SaFEM to produce very
accurate solutions for both displacement and energy norms and the superconvergent rate in the energy error norm. Further-
more, a model-based selective scheme is proposed to formulate a combined SaFEM/NS-FEM model that handily overcomes
the volumetric locking problems. Intensive numerical studies including two singularity problems have been conducted to
confirm the theory and properties of the SaFEM.

The paper is outlined as follows. In Section 2, an assumed strain field based on linear triangular element (T3) is intro-
duced. In Section 3, the variational principle is used to formulate the SaFEM. Some theoretical properties of the SaFEM
are presented and proven in Section 4. Section 5 presents a combined SaFEM/NS-FEM model for free of volumetric locking.
Section 6 briefs the numerical implementation procedure. The procedure of determining the preferable a for the supercon-
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vergent solution is introduced in Section 7. Section 8 presents and discusses numerical results. Computational efficiency and
condition number of the SaFEM are resulted in Section 9. Section 10 closes some concluding remarks.
2. Construction of an assumed strain field

The problem domain X is first divided into a set of triangular mesh with N nodes and Ne elements. We then divide, in a
overlay fashion, the domain into a set of smoothing domains Xk, k = 1, 2, . . . ,N, by connecting node k to centroids of the sur-
rounding triangles as shown in Fig. 1. The smoothing domain Xk is further subdivided into M sub-domains Xk,i as shown in
Fig. 2 such as Xk ¼

SM
i¼1Xk;i;Xk;i \Xk;j ¼ ;; i–j.

The approximation of the displacement û ¼ ðuh
x ;u

h
yÞ of the elasticity problem can be then expressed as
ûðxÞ ¼
Xnp

I¼1

NIðxÞd̂I ð1Þ
where np is the total number of nodes in the mesh, d̂I is the vector of nodal displacements and
NIðxÞ ¼
NIðxÞ 0

0 NIðxÞ

� �
ð2Þ
is the matrix of the FEM shape functions for node I created based on the elements.
In the previous work on the VCaFEM formulation [52], an assumed strain constructed for quadrilateral meshes is based on

the compatible strain and an additional strain. As a result, a simple and effective form of stiffness matrix expressed similarly
to a stabilized approach [53,54,65] is then obtained. However, such a formulation is only for quadrilateral elements. It does
not work for triangular elements because the strain in triangular elements is constant and there is no room for maneuver
within the elements. In this work, we try to create such a simple formula for triangular meshes that works well for compli-
cated geometries. To obtain this, we need to properly bring in information from the neighbouring triangular elements. Our
procedure is as follows:

First, the compatible strain ~ek;i at any point using the assumed displacement field based on triangular elements is used
~ek;i ¼ rsûk;iðxÞ ð3Þ
where rs is a differential operator matrix given by
rs ¼

@

@x
0

@

@y

0
@

@y
@

@x

2664
3775

T

ð4Þ
Because the displacement is linear, ~ek;i is constant in Xk,i and different from element to element. Such a piecewise constant
strain field obviously does not represent well the exact strain field, and should be somehow modified or corrected. To make a
proper correction, a smoothed strain for node k (see, Fig. 2) is introduced as follows:
�ek ¼
1
Ak

Z
Xk

~ek;iðxÞdX ð5Þ
where Ak is the area of smoothing domain Xk.
kkΩ
kΓ I

J

P

Field node ( qk, ) Mid-edge-point ( P );  Centroid of triangle ( JI , )

q

Fig. 1. Triangular elements and smoothing cells associated to nodes.
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Fig. 2. Smoothing cell and triangular sub-domains associated with node k.
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The strains eP, eI at points P, I are then assigned as
eP ¼ eI ¼ ~ek;i �
a
ffiffiffi
6
p

3
ð�ek � ~ek;iÞ

ek ¼ a
ffiffiffi
6
p

�ek þ ð1� a
ffiffiffi
6
p
Þ~ek;i �

a
ffiffiffi
6
p

3
ð�ek � ~ek;iÞ; 8a 2 R

ð6Þ
where a is an adjustable factor. The strain field ê at any points within a sub-triangular domain Xk,i is now re-constructed as
[55]
êðxÞ ¼ L1ðxÞek þ L2ðxÞeP þ L3ðxÞeI

¼ L1ðxÞ a
ffiffiffi
6
p

�ek þ 1� a
ffiffiffi
6
p� �

~ek;i �
ffiffiffi
6
p

3
að�ek � ~ek;iÞ

 !
þ L2ðxÞ ~ek;i �

ffiffiffi
6
p

3
að�ek � ~ek;iÞ

 !

þ L3ðxÞ ~ek;i �
ffiffiffi
6
p

3
að�ek � ~ek;iÞ

 !
ð7Þ
where L1, L2, L3 is the area coordinates for the sub-triangular Xk,i, which are partitions of unity. Eq. (7) can be simplified as
êðxÞ ¼ ðL1 þ L2 þ L3Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1

~ek;i þ a
ffiffiffi
6
p

L1ðxÞð�ek � ~ek;iÞ � ðL1 þ L2 þ L3Þ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
1

a
ffiffiffi
6
p

3
ð�ek � ~ek;iÞ ð8Þ
which can be simplified as
êðxÞ ¼ ~ek;i þ aead
k;iðxÞ ð9Þ
where ~ek;i is constant in Xk,i and
ead
k;iðxÞ ¼

ffiffiffi
6
p
ð�ek � ~ek;iÞ L1ðxÞ �

1
3

� 	
ð10Þ
which is the ‘‘adjusted” strain. It is a linear function representing the variation of the re-constructed strain field in Xk,i. It is
clear that we have successfully constructed a linear strain field in Xk,i without adding any degrees of freedoms. We now need
to examine the ‘‘legality” of the constructed strain field.
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Using the formula [2,3],
Z
Ak;i

Lp
1Lq

2Lr
3 dA ¼ p!q!r!

ðpþ qþ r þ 2Þ! 2Ak;i ð11Þ
it is easy to prove that
Z
Xk;i

ead
k;i dX ¼

ffiffiffi
6
p
ð�ek � ~ek;iÞ

Z
Xk;i

L1 �
1
3

� 	
dX ¼ 0 ð12Þ
which is termed as zero-sum property of the correction strain, which is similar to orthogonal condition that used in the sta-
bilization formulation [53,54,65]. The zero-sum property results in the following total zero-sum of the additional strain over
the entire problem domain:
Z

X
ead dX ¼

XN

k¼1

XM

i¼1

Z
Xk;i

ead
k;i dX ¼ 0 ð13Þ
Therefore, we shall have
Z
X
êdX ¼

Z
X

~edXþ
Z

X
ead dX|fflfflfflfflfflffl{zfflfflfflfflfflffl}
¼0

¼
XN

k¼1

XM

i¼1

Z
Xk;i

~ek;i dX ð14Þ
which implies that the strain ead
k;i does not effect on the constant stress state that is needed to satisfy a patch test [10,12], and

hence ensures the convergence. The zero-sum Eq. (12) as shown later is also important to simplify the formulation.
It is clear now that the key idea of this work is to re-construct carefully strain field ê using the constant compatible

strains ~e of the FEM and the node-based smoothed strains �e of the NS-FEM, so that SaFEM can always pass the standard
patch tests ensuring the convergence. In addition, we introduce an a to regularize the variation of the strain field. Based
on the findings in [50] that the gradient of strain field can be ‘‘freely” scaled as long as the zero-sum property is maintained,
the SaFEM will converge for any a 2 R. We now have a ‘‘knob” to tune for desired solutions such as upper and lower bounds
to the exact solution and superconvergent solutions. Note that the reconstruction of the strain field is very simple. The pro-
cess does not add any degrees of freedom, and all the standard FEM procedure is almost unchanged. For incompressible
problems, we further propose a novel technique that combines the SaFEM and the NS-FEM approach to overcome volumet-
ric locking.

3. Weak form for modified strain field

Property 1. The following Galerkin-like weakform
XN

k¼1

XM

i¼1

Z
Xk;i

d ~ek;i þ aead
k;i

� �T
D ~ek;i � aead

k;i

� �
dX

" #
�
Z

X
duT bdX�

Z
Ct

duT�tdC ¼ 0 ð15Þ
with the constructed strain field given by Eq. (9) is variationally consistent for elasticity problems.

Proof. In the present formulation, the usual compatible strain field is replaced by the modified strain field by Eq. (9), and
hence the modified Hellinger–Reissner variational principle with the assumed strain vector ê and displacement field û as
independent field variables for elasticity problems can be used [19]
PHRðû; êÞ ¼ �
1
2

Z
X
êT DêdXþ

Z
X
êT D~edX�

Z
X

uT bdX�
Z

Ct

uT�tdC ð16Þ
The strain energy is given by
bUðûÞ ¼ �1
2

Z
X
êT DêdXþ

Z
X
êT D~edX ð17Þ
which can be rewritten in a summation of integrals for all sub-domain Xk,i
bUðûÞ ¼XN

k¼1

XM

i¼1

�1
2

Z
Xk;i

êT
k;iDêk;i dXþ

Z
Xk;i

êT
k;iD~ek;i dX

" #
¼
XN

k¼1

XM

i¼1

Ûk;iðûÞ ð18Þ
where
bUk;iðûÞ ¼ �
1
2

Z
Xk;i

êT
k;iDêk;i dXþ

Z
Xk;i

êT
k;iD~ek;i dX ð19Þ
Substituting Eq. (7) into Eq. (19) leads to
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bUk;iðû;aÞ ¼ �
1
2

Z
Xk;i

ð~ek;i þ aead
k;iÞ

T Dðek;i þ aead
k;iÞdXþ

Z
Xk;i

ð~ek;i þ aead
k;iÞ

T D~ek;i dX

¼ �1
2

Z
Xk;i

~eT
k;iD~ek;i dX� 1

2
a
Z

Xk;i

~eT
k;iDead

k;i dX|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

�1
2
a
Z

Xk;i

ðead
k;iÞ

T D~ek;i dX|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

�1
2
a2
Z

Xk;i

ðead
k;iÞ

T Dead
k;i dX

þ
Z

Xk;i

~eT
k;iD~ek;i dXþ a

Z
Xk;i

ðead
k;iÞ

T D~ek;i dX|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼0

¼ 1
2

Z
Xk;i

~eT
k;iD~ek;i dX� 1

2
a2
Z

Xk;i

ðead
k;iÞ

T Dead
k;i dX ð20Þ
Here due to the zero-sum property by Eq. (12), three terms of integrals vanish. Hence Hellinger–Reissner variational prin-
ciple is reduced to
PHRðû; ead;aÞ ¼
XN

k¼1

XM

i¼1

1
2

Z
Xk;i

~eT
k;iD~ek;i dX� 1

2
a2
Z

Xk;i

ðead
k;iÞ

T Dead
k;i dX

" #
�
Z

X
ûT bdX�

Z
Ct

ûT�tdC ð21Þ
which will leads to a symmetric stiffness matrix.
Performing variation corresponding to a, one has
daPHRðû; ead;aÞ ¼ �a
XN

k¼1

XM

i¼1

Z
Xk;i

ðead
k;iÞ

T Dead
k;i dX) a ¼ 0 ð22Þ
In this case, Eq. (21) becomes the total potential energy (PTPE). This is not surprise, because the modified strain becomes the
original compatible strain and the standard FEM is recovered. We now perform variation with respect to ead (for any finite a)
deadPHRðu; ead;aÞ ¼ �a2
XN

k¼1

XM

i¼1

Z
Xk;i

Dead
k;i dX ¼ 0)

Z
Xk;i

ead
k;i dX ¼ 0 ð23Þ
which gives the zero-sum Eq. (12).
We next perform variation with respect to û leading to
dûPHRðû;aÞ ¼
XN

k¼1

XM

i¼1

Z
Xk;i

d~eT
k;iD~ek;i dX� a2

Z
Xk;i

ðdead
k;iÞ

T Dead
k;i dX

" #
�
Z

X
duT bdX�

Z
Ct

duT�tdC

¼
XN

k¼1

XM

i¼1

Z
Xk;i

dð~ek;i þ aead
k;iÞ

T Dð~ek;i � aead
k;iÞdX

" #
�
Z

X
duT bdX�

Z
Ct

duT�tdC ¼ 0 ð24Þ
which is the Galerkin-like weak form given in Eq. (15) that is variational consistent, because it is derived from the Hellinger–
Reissner variational principle. h

The new Galerkin-like weakform Eq. (15) is as simple as the Galerkin weak formulation: the bi-linear form is still sym-
metric, and hence the SaFEM should keep all the good properties of the standard Galerkin weak form. The Galerkin-like
weakform provides a ‘‘legal” means to re-construct the strain field. In the case of no reconstruction is made, we have
ead

k;i ¼ 0, and the Galerkin-like becomes the standard Galerkin weakform.
Substituting the approximation Eq. (1) into Eq. (15) and using the arbitrary property of variation, we obtain
bKSaFEM

a d̂ ¼ f̂ ð25Þ
where bKSaFEM
a is the element stiffness matrix with the scaled gradient strains, and f̂ is the element force vector given by
bKSaFEM
a ¼

XN

k¼1

XM

i¼1

Z
Xk;i

BT
k;iDBk;i dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

KFEM-T3

�a2
XN

k¼1

XM

i¼1

Z
Xk;i

ðBad
k;iÞ

T DBad
k;i dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}bKad

¼ KFEM-T3 � a2 bKSaFEM
ad ð26Þ

f̂ ¼
Z

X
NTðxÞbdXþ

Z
Ct

NTðxÞ�tdC ð27Þ
where KFEM-T3 is the global stiffness matrix of the standard FEM (T3). bKSaFEM
ad is derived from the correction strain, and hence it

is termed as correction stiffness matrix that help to reduce the well-known overly-stiffness of the standard FEM model. In Eq.
(26),
Bad
k;i ¼

ffiffiffi
6
p
ð�Bk � Bk;iÞ L1 �

1
3

� 	
ð28Þ
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and bKSaFEM
ad can be rewritten explicitly as
bKSaFEM
ad ¼

XN

k¼1

XM

i¼1

Z
Xk;i

ðBad
k;iÞ

T DBad
k;i dX ¼ 6

XN

k¼1

XM

i¼1

ðBk � Bk;iÞT DðBk � Bk;iÞ
Z

Xk;i

L1 �
1
3

� 	2

dX

¼ 1
3

XN

k¼1

XM

i¼1

ðBk � Bk;iÞT DðBk � Bk;iÞAk;i ð29Þ
where Bk ¼ 1
Ak

PM
i¼1

R
Xk;i

Bk;i dX ¼ 1
Ak

PM
i¼1Ak;iBk;i is the nodal strain displacement matrix of node k, Bk,i is the strain displacement

matrix of sub-triangular domain i connecting to vertex k, e.g. Fig. 2.
It is clear that correction stiffness matrix bKSaFEM

ad counts for the strain gap (cf. Eq. (10)) between the compatible (element)
strains of FEM and the smoothed nodal strains of the NS-FEM. Note that the present formulation (cf. Eq. (26)) is always stable
for any finite parameters a. Hence a can be manipulated without affecting the convergence of the model [51], and it plays a
crucial role to ensure the accuracy of the model. Manipulating bKSaFEM

ad through a can, however, change the convergent rate of
the model.

Eq. (26) may be rewritten in the following form:
K̂SaFEM
a|fflfflffl{zfflfflffl}
SPD

¼ bKSaFEM
a¼0|fflfflffl{zfflfflffl}

KFEM-T3 ;SPD

�a2 bKSaFEM
ad|fflfflffl{zfflfflffl}
SPD

ð30Þ
Here we note the symmetric positive definite (SPD) property of all these matrices after the imposition of the essential bound-
ary condition for a well-posed problem.
4. Properties of the SaFEM model

Remark 1 (Variational consistence). The present method is variationally consistent for any real finite a, because it is derived
from the modified Hellinger–Reissner principle rooted from the Hu–Washizu principle.

Owing to the SPD property of bKSaFEM
a ; bKSaFEM

a¼0 (or KFEM-T3) and bKSaFEM
ad , Eq. (26) shows clearly that bKSaFEM

a is ‘‘softer” than
KFEM-T3. In other words, the scaling of the strain gap by factor a creates a ‘‘softer” model. We next state

Remark 2 (Softening effect). The scaling to the strain gap always provides softening effects. This means that the present
model is ‘‘softer” than the fully-compatible FEM-T3 model for any scaling finite real factor a.

Remark 3 (Existence of critical a). From Eq. (26), it is clear that for a finite mesh, bKSaFEM
a can even be made negative definite

for a sufficiently large parameter a. Therefore, there exists a smallest a such that bKSaFEM
a is SPD. The smallest a is termed as

the critical a or acr. The critical a can be found as the smallest eigenvalue of the following eigenvalue problem:
bKSaFEM
a¼0 � a2

cr
bKSaFEM

ad

h i
U ¼ 0 ð31Þ
The SPD property of bKSaFEM
a¼0 and bKSaFEM

ad ensures a unique solution to the above eigenvalue equation, and hence an acr can al-
ways be found.

Note that at acr, the solution can become infinite. This implies that the present model can be made to be as soft as possible
by using an a that approaches to acr. This property is useful, because it ensures that the present model can be made to be
‘‘soft” enough to give an upper bound to the exact solution of any well-posed problems.

Note also that in practical application of present method, there is no need to solve the expensive eigenvalue problem
defined in Eq. (31). The eigenvalue argument used here is only of theoretical importance, because the existence of acr is
needed to prove important properties of the present method.

Remark 4 (SPD). When 0 6 a < acr, the stiffness matrix bKSaFEM
a is an even parabolic function of a. It varies continuously frombKSaFEM

a¼0 to bKSaFEM
a¼0 � a2

cr
bKSaFEM

ad . It is SPD for well-posed problems, because of Remark 3.

Remark 5 (Bottom-line: proven fact). When a = 0.0, we have bKSaFEM
ða¼0Þ ¼ KFEM-T3. The present method becomes the standard

FEM-T3.
We now prove the fact that the solution of the present model will converge, as long as the original problem is well-posed.

Property 2 (Convergence property). For any given finite real number 0 6 a < acr, the SaFEM solution always converges to the
exact solution when the dimensions of all the smoothing cells approach to zero.

Proof. Eq. (17) can be rewritten as
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bUðaÞ ¼ 1
2

XN

k¼1

XM

i¼1

Z
Xk;i

~eT
k;iD~ek;i dX� a2 1

2

XN

k¼1

XM

i¼1

Z
Xk;i

ðead
k;iÞ

T Dead
k;i dX

¼ 1
2

XN

k¼1

XM

i¼1

Z
Xk;i

~eT
k;iD~ek;i dX� a2 1

2

XN

k¼1

XM

i¼1

Z
Xk;i

ð�ek � ~ek;iÞT Dð�ek � ~ek;iÞdX ð32Þ
From the definition of smoothed strain �ek, the nodal smoothed strains will approach to the compatible strain
~eð~ek;i ¼ lim

Ak;i!0
�ek ¼ lim

Ak;i!0

1
Ak;i

R
Xk;i
rsbu dXÞ when the size of all smoothing cells approaches zero. Therefore, one has
XN

k¼1

XM

i¼1

Z
Xk;i

ð�ek � ~ek;iÞT Dð�ek � ~ek;iÞdX! 0 ð33Þ
At this limit, Eq. (32) becomes the standard FEM formulation that has been proven to converge to the exact solution. Thus,
this completes the proof of Property 2. h

This property ensures that the present solution will converge with any finite real number 0 6 a < acr. However, the con-
vergence rate and bound properties are effected by the choice of a. An ideal a can give the exact solution in energy norm, but
it can be expensive to find. A preferred a can be quite easily and less expensively found to produce a superconvergent solu-
tion, or ‘‘tight” solution bounds. This is stated in the following theorem.

Property 3 (Bounds to the exact solution). There exists an aupper 2 [0, acr), such that the exact solution in energy norm is
bounded by
bUða ¼ 0Þ 6 Uexact 6

bUðaupperÞ ð34Þ
Proof. First, by definition we immediately have
bUða ¼ 0Þ 6 Uexact ð35Þ
From Eq. (26) and for any admissible ~d, we have
~dT bKSaFEM
a

~d|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
>0

¼ ~dT KFEM ~d|fflfflfflfflffl{zfflfflfflfflffl}
>0

�a2 ~dT bKSaFEM
ad

~d|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
>0

; 8a 2 ½0;acrÞ ð36Þ
which means that
~dT bKSaFEM
a

~d 6 ~dT bKFEM ~d; 8a 2 ½0;acrÞ ð37Þ
which implies that [40]
bUSaFEM
a P bUSaFEM

a¼0 ¼ UFEM; 8a 2 ½0;acrÞ ð38Þ
Eq. (37) shows that the stiffness matrix of the SaFEM is ‘‘softer” than that of the FEM-T3 element.
On the other hand, from Remark 2 we can make the SaFEM as soft as possible by increasing a. To show this

mathematically, we consider a well-posed problem in which the solution in displacement d̂ obtained using the SaFEM model
can be expressed as
d̂ ¼
XNdof

i

ciUi ð39Þ
where Ui is the ith eigenvector obtained by solving Eq. (31), ci is the ith model participation factor that can be determined by
substituting Eq. (39) into Eq. (26), and Ndof is the number of the total unconstrained degree of freedom of the model. Using
Eqs. (36) and (39), and the orthogonal properties of these eigenvectors, we have
a2
XNdof

i

ciU
T
i
bKSaFEM

ad UT
i ¼

XNdof

i

ciU
T
i
bKSaFEM

a¼0 UT
i �

XNdof

i

ciU
T
i
bKSaFEM

a Ui ð40Þ
For the well-posed problem, there exists an exact solution with strain energy Uexact > 0. To obtain an upper bound solution in
energy by using the SaFEM model, we need
d̂T bKSaFEM
aupper

d̂ ¼
XNdof

i

ciU
T
i
bKSaFEM

aupper
Ui P Uexact ð41Þ
Substituting Eq. (41) into (40), we now find
a2
upper 6

PNdof

i ciU
T
i
bKSaFEM

a¼0 UT
i � UexactPNdof

i ciU
T
i
bKSaFEM

ad UT
i

6 a2
cr ð42Þ
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Using the aupper satisfying Eq. (42), we have
Uexact 6
bUðaupperÞ ð43Þ
The combination of Eqs. (35) and (43) gives (34). h

This proof using the eigenvalue argument shows theoretically the existence of aupper and the fact that the SaFEM can al-
ways produce upper bounds. Our numerical experience has shown that for given problems, an aupper usually exists. In addi-
tion, the exact value of aupper is not important. Any aupper of which strain energy is reasonably close to the exact energy can
create an upper bound. Therefore, in practical application of the SaFEM, there is no need to solve the expensive eigenvalue
problem defined by Eq. (31). Our numerical experience shows that aupper may be simply fixed at 1.7 and it works well for all
numerical examples tested.

Remark 6 (Negative a). It is observed that bUðaÞ is an even function of second order of the scaling factor a. Therefore, the
present method also converges for any negative real finite �acr < a 6 0 when the mesh size tends to zero.
5. Free of volumetric locking: a combined SaFEM/NS-FEM model

Similar to the standard FEM, the SaFEM can lead to a poor accuracy for plane strain problems in the nearly incompressible
limit. This is well-known as volumetric (or Poisson’s) locking. One of the ways to overcome this problem is to use selective
formulations in the conventional FEM [1]. In this work, we use selectively two different models for two different material
‘‘terms” (deviatoric term and volumetric term). The SaFEM is applied to the deviatoric term, while the NS-FEM [39] which
was demonstrated effectively to overcome the volumetric locking is applied to the volumetric term. The details are given
below

The material property matrix D for isotropic materials is first rewritten as
D ¼ Ddev þ Dvol ð44Þ
where Ddev, Dvol are deviatoric and volumetric matrices, respectively
Ddev ¼ l
2 0 0
0 2 0
0 0 1

264
375; Dvol ¼ k

1 1 0
1 1 0
0 0 0

264
375 ð45Þ
where the shearing modulus l = E/2(1 + m), and the Lame’s parameter k = 2ml/(1 � 2m).
In our model-based selective scheme, we use the SaFEM to calculate the stiffness matrix related to the deviatoric term

and the NS-FEM to calculate the one related to the volumetric term. Therefore, the stiffness matrix of the combined Sa/
NS-FEM model becomes
bK ¼ bKSaFEM

a þ bKNS-FEM ð46Þ
where bKSaFEM
a is given by Eq. (26), and
bKNS-FEM ¼
XN

k¼1

XM

i¼1

Z
Xk;i

BT
k DvolBk dX ð47Þ
By this way, the present method is free of volumetric locking for any finite value a when the Poisson’s ratio approaches to
0.5. An interesting point here is that our method can deal with nearly incompressible cases without using additional degrees
of freedom as presented in [6,8–10]. Therefore, our formulation provides an alternative and simple way to solve volumetric
locking problems. It works as long as the splitting of D in Eq. (44) can be performed.

6. Numerical implementation

The numerical procedure for the present SaFEM can be briefed as follows:

1. Discrete the domain X into two sets of mesh including one coarse mesh and one finer mesh with the same aspect ratio
(M(1), M(2)) [50,51] of triangular elements such that X ¼

Pnel
i¼1X

i and Xi \Xj = ;,i – j;
2. Create smoothing domains Xk such that X ¼

PNn
k¼1Xk and Xi \Xj = ;, i – j.

3. Choose one array of a 2 [1.3, 1.7], for instance a 2 ½1:3 1:4 1:5 1:6 1:7 �.
4. Loop over each set of meshes generated in step 1
{
� Loop over a set a 2 [1.3, 1.7]

{
s Loop over all nodes

{
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+ Compute the area of smoothing domains Xk associated with nodes k and find neighbouring smoothing domains
of each node.

+ Evaluate the gradient matrix Bk;Bk;i in Eqs. (26), (28).
+ Compute the stiffness matrices KFEM-T3; bKSaFEM

ad and KFEM-T3 � a2 bKSaFEM
ad in Eq. (26) and load vector in the current

smoothing domain.
+ Assemble the stiffness matrix and force vector of current smoothing domain into the global stiffness matrix and

load vector.
}// End the loop over all nodes
� Apply boundary conditions
� Solve system equations to determinate nodal displacements
� Compute strain energy against each value a and store all energies bU ðiÞðaÞ into an array, for example,
8i ¼ 1;2 : EðiÞ ¼ bU ðiÞð1:3Þ bU ðiÞð1:4Þ bU ðiÞð1:5Þ bUð1:6Þ bU ðiÞð1:7Þh i

}// End the loop over the array a 2 [1.3, 1.7]
}// End the loop over two sets of given meshes

5. Interpolate and evaluate the intersection point a(12) from two curves E(1), E(2).
6. Repeat steps from 1 to 5 for two sets of successively finer meshes (hi, i = 2,3) with the same aspect ratio and calculate the

intersection point a(23) from two curves E(2), E(3).

It is observed from numerical results that when an a 2 [1.3, 1.7] is used directly for any meshes, SaFEM solutions are
always much better than those of FEM-T3, FEM-Q4, NS-FEM-T3, and even much better than ES-FEM-T3 [45] that has been
found to be one of the most accurate models using triangular meshes.

I0f we want to reproduce sufficiently both upper and lower bounds of solution, an a 2 [1.3, 1.7] can be also found. In addi-
tion, we can show the superconvergent property of the model in the energy error norm for solid mechanics problems via the
effective manipulation of a-parameter.

7. Determination of preferable a for superconvergent solution

As demonstrated in Section 8, the SaFEM can produce ‘‘exact” solutions or a superconvergent solution for both displace-
ment and energy norms by properly choosing the scaling factor a. Therefore a question now is that how to find such an ‘‘ex-
act” value a. Our numerical tests show that aexact is not only problem-dependent but also mesh-dependent [50–52]. In this
work we only concern on the superconvergent property in the energy norm, and hence a ‘‘preferable” a needs to be chosen to
achieve such a solution. We adopt the procedure proposed in [55] to find such ‘‘preferable” a, and assume
apref ðhÞ ¼ ahþ b ð48Þ
where a and b are unknown and problem-dependent constants, which can be determined from the intersection a(12) and a(23)

obtained in Section 6. Hence, Eq. (48) becomes
aexactðhÞ � apref ðhÞ ¼
að12Þðh1Þ � að23Þðh2Þ

h1 � h2
ðh� h1Þ þ að12Þðh1Þ ð49Þ
where h1, h2are the average nodal spacing of two sets of meshes (M(1), M(2)) and (M(2), M(3)), respectively.
Eq. (49) provides a simple way to find a preferable a that can lead to the superconvergent solution in the energy norm.

8. Numerical study

In this section, benchmark problems are examined using the SaFEM. For comparison, the following models are used.

� T3 – three-node element of the standard FEM with shape linear function.
� Q4 – 4-node quadrilateral element the standard FEM using 2 � 2 Gauss points.
� EQ4 – 4-node quadrilateral element of the equilibrium model [66].
� NS-T3 – the nodal-based SFEM using triangular meshes (NS-FEM-T3) [39].
� ES-T3 – the edge-based SFEM (ES-FEM-T3) [45] that was found to be one of the ‘‘most” accurate models using linear tri-

angular elements.

8.1. Standard patch test: linear reproducibility/convergence

In order to check numerically the convergence of the present SaFEM stated theoretically by Property 2, the standard patch
test [67] is first conducted. The patch used in the test is shown in Fig. 3. The exact displacement, strain and stress are given by
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u ¼ 10�3ðxþ y=2Þ; v ¼ 10�3ðx=2þ yÞ
ex ¼ ex ¼ cxy ¼ 10�3; rx ¼ ry ¼ 1333; sxy ¼ 400

ð50Þ
Our numerical tests have found that the exact values are reproduced to machine precision. Hence, the present SaFEM for any
finite a passes the standard patch test.

8.2. Cantilever beam loaded at the end: convergence study and volumetric locking

In order to examine the numerical convergence rate of the present method, two norms are used: displacement error norm
and energy error norm. The displacement error norm is defined as
ed ¼
Pndof

i¼1 ui � uh
i



 

Pndof
i¼1 juij

� 100% ð51Þ
where ui is the exact and uh
i is the numerical solution of the displacements. The energy error norm is defined by
eeðaÞ ¼ jbUðaÞ � Uexact j1=2 ð52Þ
where the total strain energy of numerical solution E(a)
Fig. 3. Constant strain/stress patch test (E = 106, m = 0.25, thickness t = 0.001).

Fig. 4. A rectangular cantilever and boundary conditions of a cantilever subjected to a parabolic traction at the free end.
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Fig. 5. Domain discretization using 64 rectangular (or 128 triangular) elements of the cantilever beam.
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bUðaÞ ¼ 1
2

d̂T bKd̂ ¼ 1
2

d̂T
XN

k¼1

XM

i¼1

Z
Xk;i

BT
k;iDBk;i dX� a2

XN

k¼1

XM

i¼1

Z
Xk;i

ðBad
k;iÞ

T DBad
k;i dX

( )
d̂ ð53Þ
and Uexact is the exact strain energy of the problem.
A rectangular cantilever with length L and height D and a unit thickness is studied as a benchmark here, which is sub-

jected to a parabolic traction at the free end as shown in Fig. 4. The analytical solution is available and can be found in a
textbook by Timoshenko and Goodier [68].
ux ¼
Py
6EI

ð6L� 3xÞxþ ð2þ �mÞðy2 � D2

4
Þ

" #

uy ¼ �
P

6EI
3�my2ðL� xÞ þ ð4þ 5�mÞD

2x
4
þ ð3L� xÞx2

" # ð54Þ
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Fig. 6. Vertical displacement at central line (y = 0) using 128 triangular elements of the cantilever beam with apref (h) = 0.033h + 1.372.
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where the moment of inertia I for a beam with rectangular cross section and unit thickness is given by I ¼ D3

12 and
E ¼
E

E=ð1� m2Þ

�
; �m ¼

m for plan stress
m=ð1� mÞ for plan strain

�
ð55Þ
The stresses corresponding to the displacements Eq. (54) are
rxxðx; yÞ ¼
PðL� xÞy

I
; ryyðx; yÞ ¼ 0; sxyðx; yÞ ¼ �

P
2I

D2

4
� y2

 !
ð56Þ
The related parameters are taken as E = 3.0 � 107 kPa, D = 12 m, L = 48 m and P = 1000 N.
Discretization with 128 triangular elements is illustrated in Fig. 5. Under plane stress conditions and Poisson ratio m = 0.3,

Fig. 6 plots the displacements along the neutral axis. The result shows that the SaFEM produces very good results compared
100

10−1

100

log10(h)

lo
g 10

(e
e)

T3(r=0.93)
ES−FEM−T3(r=1.42)
NS−FEM−T3(r=0.98)
Q4(r=0.98)
α=1.3(r=1.14)
α=0.033h+1.372(r=2.07)
α=1.6(r=0.91)

Fig. 8. Convergence and the estimated rate in the energy norm of the cantilever beam.
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to those of others elements. Here we use the procedure given in Section 7 to compute apref which is found to be
apref(h) = 0.033h + 1.372.

Next we plot the convergence rates of the displacement and energy error norms using apref(h) = 0.033h + 1.372 and two
other a values. Fig. 7 shows the convergence rate in the displacement norm. The results of the present method are compared
to those of T3, Q4, NS-T3 and ES-T3. It is observed that the SaFEM with apref(h) is superconvergent in displacement norm. It is
well-known that the theoretical convergence rate in displacement norm for linear FEM is 2.0, and the numerical rate for T3 is
1.86 slightly below the theoretical rate. The ES-T3 achieved 2.55 that is far above the theoretical value, and the present
SaFEM with apref(h) achieved 3.06 which is even better than the ES-FEM. The present SaFEM can achieve the superconver-
gent rate for the displacement error norm for this problem, which is clearly different from the usual concept of supercon-
vergence property only in the energy norm in the standard FEM. In terms of accuracy, the SaFEM with apref(h) clearly
stands out and is about 20 times more accurate than the T3, and even 7 times more accurate than Q4. The SaFEM with apref(h)
is also much more (about 4 times) accurate than the ES-T3. Note that the SaFEM with a = 1.3 performed as well as the Q4.
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Fig. 10. Vertical displacement for the cantilever beam at the nodes along the x-axis (y=0) using the node-based selective technique with m = 0.4999.
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Fig. 11. Convergence of some ‘‘looking free” models in the displacement error for the cantilever beam (m = 0.4999).
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Fig. 12. Convergence and the estimated rate of some ‘‘looking free” models in the energy error for the cantilever beam (m = 0.4999).

Fig. 13. Infinite plate with a circular hole and its quarter model.
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Fig. 8 illustrates the convergence rate in the energy norm. It is observed that the SaFEM with apref(h) is superconvergent in
energy norm. The theoretical convergence rate in energy norm for linear FEM is 1.0, and the numerical rate for FEM-T3 is
0.93 which is slightly below the theoretical rate. The ES-T3 achieved 1.42 that is far above the theoretical value. The present
SaFEM with apref(h) achieved 2.07 that is even better than the ES-FEM. In terms of accuracy, the ES-FEM and the SaFEM with
apref(h) are the best ones which are about 7 times more accurate than the T3, and even about 3 times better than Q4. The
SaFEM with apref(h) is little more (about 1.4 times) accurate than the ES-T3. The SaFEM with a = 1.3 performed as well as
the Q4 in the energy norm.

We further investigate the bound properties of the strain energy using the SaFEM with apref(h). To highlight these prop-
erties, the equilibrium element (EQ4) and the compatible element (T3) are also used in the computation. The results are plot-
ted in Fig. 9. It is observed that (1) the solution of SaFEM with any a 2 [1.3, 1.7]1 converges to the exact solution; (2) the
strain energy of the SaFEM is bounded by the solutions of these two classical models: pure equilibrium (EQ4) and displace-
ment models (T3); (3) the SaFEM solutions using any a 2 [1.3, 1.6] are more accurate than those of both the pure equilibrium
model and displacement model. Therefore, even if one does not want to find the apref, one can simply use any a 2 [1.3, 1.6] to
obtain a more accurate solution than those of two classical models; (4) it is possible to bound the solution by using SaFEM
with two as.

Next, we investigate the volumetric locking issue for the nearly incompressible materials under plane strain condition.
Fig. 10 plots the numerical results of the displacements along the neutral axis for a material with the Poisson ratio
m = 0.4999. It is clear that T3 and SaFEM with any a yield poor accuracy. In the contrast, the NS-T3 model gives a good agree-
1 Theoretically, the SaFEM has been proved to converge for anya 2 [0, acr). In application, the range of a 2 [1.3, 1.7] gives good performance and provides all
the major features of method.



4070 G.R. Liu et al. / Journal of Computational Physics 228 (2009) 4055–4087
ment with the analytical solution. However, the NS-T3 model is too soft. Therefore, a combined SaFEM/NS-FEM model de-
scribed in Section 5 can handily avoid volumetric locking for nearly incompressible materials, as shown in Fig. 10. We also
found that the domain-based selective ES/NS-FEM model [45] also works very well for incompressible materials, but not as
good as the present combined SaFEM/NS-FEM model.

We now analyze in more detail the convergence rates in term of both displacement and energy for some ‘‘locking free”
models. Figs. 11 and 12 compare, respectively, the convergence of the error norms in displacement and energy of the Sa/NS-
FEM (as m = 0.4999) with the other elements: a selective reduced integration (SRI) technique [1], the quadrilateral equilib-
rium element (EQ4) and the recently very accurate ES-FEM model [45]. It is found that a superior accuracy and supercon-
vergence is observed for the Sa/NS-FEM at apref(h).

8.3. Square solid with a circular hole: convergence study

Fig. 13 represents a square 2D solid with a central circular hole of radius a = 1 m, subjected to a unidirectional tensile load
of r = 1.0 N/m at infinity in the x-direction. Due to its symmetry, only the upper right quadrant of the plate is modeled. Plane
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Fig. 14. Domain discretization using 64 quadrilateral (or 128 triangular) elements for the quarter model of the infinite plate with a circular hole.
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strain condition is assumed and E = 1.0 � 103 N/m2, Poisson ratio m = 0.3. Symmetric conditions are imposed on the left and
bottom edges, and the inner boundary of the hole is traction free. The exact solution of the stress for the corresponding infi-
nite solid is [68]
r11 ¼ 1� a2

r2

3
2

cos 2hþ cos 4h

� �
þ 3a4

2r4 cos 4h

r22 ¼ �
a2

r2

1
2

cos 2h� cos 4h

� �
� 3a4

2r4 cos 4h
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2r4 sin 4h
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Fig. 16. Vertical displacement of the infinite plate with a hole along the left boundary.
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where (r, h) are the polar coordinates and h is measured counterclockwise from the positive x-axis. Traction boundary con-
ditions are imposed on the right (x = 5.0) and top (y = 5.0) edges based on the exact solution Eq. (57). The displacement com-
ponents corresponding to the stresses are
u1 ¼
a

8l
r
a
ðjþ 1Þ cos hþ 2

a
r
ðð1þ jÞ cos hþ cos 3hÞ � 2

a3

r3 cos 3h

� �
u2 ¼

a
8l

r
a
ðj� 1Þ sin hþ 2

a
r
ðð1� jÞ sin hþ sin 3hÞ � 2

a3

r3 sin 3h

� � ð58Þ
where l = E/(2(1 + m)),j is defined in terms of Poisson’s ratio by j = 3 � 4m for plane strain cases. An illustration of 128 tri-
angular elements is given in Fig. 14.
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Figs. 15 and 16 illustrate the results for displacements along bottom and left boundaries of the SaFEM (at
apref(h) = 0.147h + 1.395), T3, Q4, NS-T3 and ES-T3 using the coarse mesh with 128 triangular elements. It is shown that
the SaFEM is a strong competitor of the ES-T3, whereas the T3 and NS-T3 are less accurate. Note that the displacements
of the SaFEM at a = apref(h)are even better than those of the Q4. Figs. 17 and 18 exhibit the comparison between the com-
puted stresses using the SaFEM and analytical values. It is observed that the SaFEM solutions are in a good agreement with
exact solution and display smooth solutions without using any post-process.

The strain energy curves computed using the SaFEM are plotted in Fig. 19. It is easy to see that the SaFEM has lower
bound (a = 1.4) and upper bound (a = 1.6) compared to the exact solution. As expected, the FEM models behave over-stiffly
and hence give lower bounds, while the equilibrium element (EQ4) and NS-T3 behave over-softly and give upper bounds.
Using the SaFEM, we can obtain a quite close-to-exact stiffness, and hence the very accurate results are achieved when
a = apref(h). Figs. 20 and 21 plot the convergence rates for the error in displacement and energy using
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Fig. 22. Semi-infinite plane subjected to a uniform pressure.
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Fig. 23. Domain discretization of the semi-infinite plane problem using triangular elements.
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apref(h) = 0.147h + 1.395. It is observed that (1) the present SaFEM is, respectively, about 3.5 (for displacement norm) and 8.2
(for energy norm) times more accurate than T3 and even more accurate than Q4; (2) a superconvergent solution is obtained
for the SaFEM in energy norm; (3) the SaFEM stands out clearly in energy norm measure.

8.4. Semi-infinite plane: convergence study

The semi-infinite plane shown in Fig. 22 is studied subjected to a uniform pressure within a finite range (�a 6 x 6 a). The
plane strain condition is considered. The analytical stresses are given by [68]
r11 ¼
p

2p
½2ðh1 � h2Þ � sin 2h1 þ sin 2h2�

r22 ¼
p

2p
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s12 ¼
p

2p
½cos 2h1 � cos 2h2�
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Fig. 25. Convergence and the estimated rate in displacement norm for the semi-infinite plane problem.
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The directions of and are indicated in Fig. 22. The corresponding displacements can be expressed as
u1 ¼
pð1� m2Þ

pE
1� 2m
1� m

½ðxþ aÞh1 � ðx� aÞh2� þ 2y ln
r1

r2

� �
u2 ¼

pð1� m2Þ
pE

1� 2m
1� m

yðh1 � h2Þ þ 2H arctan
1
c

� �
þ 2ðx� aÞ ln r2 ��2ðxþ aÞ ln r1 þ 4a ln aþ 2a lnð1þ c2Þ

� � ð60Þ
where H ¼ ca is the distance from the origin to point O0, the vertical displacement is assumed to be zero and c is a coefficient.
Due to the symmetry about the y-axis, the problem is modeled with a square width. The left and bottom sides are con-

strained using the exact displacements given by Eq. (60) while the right side is subjected to tractions computed from Eq.
(59). Fig. 23 gives the discretization of the domain using triangular elements.

Again, it is found from Fig. 24 that (1) the upper and lower bound properties on the strain energy of the SaFEM have been
obtained; (2) the SaFEM with apref(h) is superior to all the other models including the ES-T3. We also note the solution of the
SaFEM (a = 1) is even more accurate than that of Q4 for this problem. The convergence rate of the errors in displacement and
energy is evaluated and represented in Figs. 25 and 26. It is shown that the SaFEM withapref(h) is about 3.4 (for displacement
node) and 5.3 (for energy norm) times more accurate than T3 and about 4 times more accurate than the Q4. Superconver-
gence is also observed for the SaFEM: the convergence rate of r = 1.55 is larger than the theoretical value of 1.0 in energy
norm.
Fig. 27. Cook’s membrane problem and its discretization using the coarse mesh.
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Fig. 28. Comparison of displacement tip for Cook’s membrane (m = 1/3).



8.5. Cook’s membrane: test for bending behavior and volumetric locking

This benchmark problem, shown in Fig. 27, is a well known Cook’s membrane problem designed for testing a numerical
method in simulating bending behavior as well as volumetric locking [69]. The problem refers to a clamped tapered panel
subjected to an in-plane shearing load, resulting in deformation dominated by a bending deformation. The computation is
performed under the plane stress condition, Young’s modulus E = 1 and Poisson’s ratio m = 1/3. The exact solution of the prob-
lem is unknown. The reference value of the vertical displacement at center tip section is found to be 23.9642 [65] and the
reference value of the strain energy is 12.015 [70].

Fig. 28 compares the result of displacement tip of the SaFEM with eight published 4-node quadrilateral elements: Q4-
standard isoparametric 2 � 2 quadrature Gauss points, FB-one Gauss point with hourglass stabilization [71], QBI-Quintes-
sential bending/incompressible element [53], KF-one Gauss point with hourglass control [72], the quadrilateral equilibrium
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element (EQ4), a nodal-based smoothed FEM using triangular mesh (NS-T3) and an edge-based smoothed FEM using trian-
gular mesh (ES-T3). It can be seen that (1) the result of the SaFEM at a = 1.4 is much more accurate than all those of other
elements with coarse meshes; (2) a very tight solution bounds can be given using a = 1.4 and a = 1.7.

The convergence of the strain energy is exhibited in Fig. 29, and the convergence rate of the error norm in energy is shown
in Fig. 30. The results shows again the superiority of the present SaFEM to other models, and it is about eight times more
accurate that both the T3 and Q4 in energy norm.

We now consider further the case of nearly incompressible material with m = 0.4999999 in the plane strain condition. As
shown in Fig. 31, the SaFEM at a = 1.4 gives again much more accurate solution compared to all the others elements such as
QBI element [53], ASMD, ASQBI, ASOI elements [54] of FEM models.
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Fig. 31. Comparison of displacement tip for Cook’s membrane (m = 0.4999999).

Fig. 32. Geometric model and boundary conditions of an automobile connecting bar.



Fig. 33. Domain discretization of the connecting bar using three meshes (a) Mesh 1 (116 nodes); (b) Mesh 2 (373 nodes); (c) Mesh 3 (1321 nodes).
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8.6. A connecting rod: automobile part

This example performs a static stress analysis of an automobile part as a part of an actual industry project. The connecting
bar has a relatively complicated geometry, and it is difficult in generating meshes using quadrilateral elements, and hence
we use only triangular elements that can be generated with ease for all the models. The boundary conditions as well as the
applied load are demonstrated as shown in Fig. 32 with p = 1 MPa. Plane stress problem is considered with elastic modulus
E = 10 GPa and Poisson’s ratio m = 0.3.

Fig. 33 shows the discretization of the domain using 3 meshes (116, 373 and 1321 nodes) with triangular elements.
As analytical solutions are unavailable, a reference solution of strain energy of 331.17656 is computed using the T3 with
as many as 22788 nodes. Fig. 34 illustrates the strain energy of the SaFEM for several a-values. It is shown again that the
SaFEM can produce upper bound (with a = 1.7) or lower bound (with a = 1.5) solutions in energy norm by an adjustable
parameter a. The convergence rate of the SaFEM for two a-values plotted in Fig. 35 is clearly superior to others elements
of FEM models.

Singularity cases
We next apply the present SaFEM to analyze two problems with different orders of singularity: L-shaped panel subjected

to tractions and a rectangular panel with an edged crack subjected to tension.
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8.7. L-shaped panel subjected tractions: Re-entrant corner singularity

Consider an L-shaped panel under plane stress condition with applied tractions and boundary conditions as shown in
Fig. 36. The parameters of the structure are E = 1.0, m = 0.3, t = 1. In this problem, the re-entrant corner possesses a stress
singularity.

The exact strain energy of this problem is not available. However, it can be estimated through the procedure of Richard-
son’s extrapolation for the displacement models and equilibrium models [41,42]. The estimated precision is determined by
the mean value of these two extrapolated strain energies. The reference strain energy given in [73] is approximately
15566.460 and is used to estimate the convergence rate of all elements.

The convergence of the strain energy is exhibited in Fig. 37, and the convergence rates are plotted in Fig. 38. It is clear that
the SaFEM can provide the upper and lower bound properties on the strain energy by choosing a parameter a 2 [1.3, 1.5], see
Fig. 37. Using the procedure given in Section 7 to compute apref, the best possible solution is obtained at
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Fig. 34. Strain energy for different values a of the connecting rod.
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apref = 0.6582h + 1.4119. As shown in Figs. 37 and 38, the accuracy of the SaFEM with apref(h) is very high and is superior to all
the other models including the ES-FEM. We also note that the strain energy of the SaFEM (a = 1.3) is even more accurate than
that of ES-FEM for this problem. The convergence rate of the SaFEM is nearly superconvergent (r = 1.1) at apref because of the
stress singularity. In addition, an adaptive approach in the vicinity of the corner may be useful to reduce the error and sig-
nificantly enhance the computational effect.

8.8. Rectangular panel with an edged crack subjected to tension: strong singularity case

Consider now a fracture problem of a rectangular panel with an edged crack subject to tension as shown in Fig. 39. The
input data for this problem are E = 1.0 N/m2, m = 0.3, t = 1 m. Only half of domain is modeled in the present SaFEM with uni-
form meshes of the same aspect ratio. By incorporating the dual analysis [41,42] and the procedure of Richardson’s extrap-
olation with very fine meshes, Beckers et al. [73] proposed the best possible approximation of the exact strain energy to be
Fig. 36. L-shaped panel and its discretization using the uniform coarse mesh of 384 triangular elements.
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Fig. 37. Upper and lower bounds of strain energy for the L-shaped panel problem.
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Fig. 38. Convergence and the estimated rate in energy norm for the L-shaped panel problem.
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Fig. 39. (a) Fracture problem and the half model; (b) The uniform coarse mesh of 128 triangular elements.
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8085.7610. Fig. 40 plots the convergence of the strain energy, and the convergence rates are shown in Fig. 41. It is shown that
the upper and lower bound properties on the strain energy are completely achieved by manipulating a parameter a 2 [1.3,
1.6]. Using the procedure given in Section 7, apref is proposed for the best possible solution to be apref = 0.0115h + 1.5652. The
results given in Figs. 40 and 41 show that the solution of the SaFEM is very accurate compared to all the other models and the
convergence rate (r = 0.94) of the SaFEM at apref (h) is nearly twice the convergence rate derived from the conforming FEM
approaches and others models. Again, the strain energy of the SaFEM (a = 1.3) is also more accurate than that of ES-FEM. In
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Fig. 40. Solution in strain energy for fracture problem.
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Fig. 41. Convergence and the estimated rate in energy norm for the crack edge rectangular plate.



4084 G.R. Liu et al. / Journal of Computational Physics 228 (2009) 4055–4087
addition, due to the strong singularity at a crack tip, the incorporation of the SaFEM with XFEM [33–35,38] may be very use-
ful to analyze fracture mechanics problems.

9. Computational efficiency and condition number of stiffness matrix

Now we mention the computational efficiency of present method compared with other methods. Owing to the establish-
ment of the assumed strain field in Eq. (9), no additional degrees of freedom are necessary. Without lose of generality, let us
consider the computational efficiency for the cantilever beam. Figs. 42 and 43 illustrate the errors in displacement and en-
ergy norms against the CPU time (seconds). It is observed that the computation time of the SaFEM is longer than those of the
Q4 and the T3, the ES-T3 and as same as that of the NS-T3. The reason is due to the additional time required for the additional
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Fig. 42. Comparison of the computational efficiency in displacement error norm for a cantilever beam.
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assessment and assemblage of nodal stiffness matrix in (29). However, considering the computational efficiency (computa-
tion time for the same accuracy) in terms of displacement and energy error norms, the SaFEM is more effective.

We have also checked the condition number of stiffness matrix. As shown from Fig. 44, the condition number of the
SaFEM stiffness matrix is roughly the same as those of the standard FEM-Q4 element. This implies that the SaFEM should
be as stable and the FEM-Q4 model.

10. Conclusion

This paper presents carefully a designed procedure to modify the piecewise constant strain field of linear triangular FEM
models, and to reconstruct a strain field with an adjustable parameter a. The new Galerkin-like weakform proposed is simple
and possesses the same good properties of the standard Galerkin weak form. A superconvergent alpha finite element method
(SaFEM) for solid mechanics problems is then formulated by using the modified strain field and the weak form. Important
properties of the present method are properly proven theoretically, and confirmed numerically. The method has the follow-
ing attractive features: (1) it is variationally consistent because the weak form are derived from the Hellinger–Reissner var-
iational principle; (2) the SaFEM can always provide both lower and upper bounds to the exact solution in energy norm for
all elasticity problems by properly choosing a 2 [0, acr); for all the example problems tested in this paper, a = 1.3 always
gives a lower bound, and a = 1.7 gives an upper bound; (3) it always produces a superconvergent solution for an a 2 [1.3,
1.7], and very accurate and superconvergent solution can be found using apref(h) that can be found via simple steps for a gi-
ven problem; (4) Volumetric locking is overcome by using a novel technique of model-based selective Sa/NS-FEM; (5) Final-
ly, the SaFEM is easy to implement into a finite element program using triangular meshes that can be generated with ease for
complicated problem domains.

In addition, it is promising to extend the present method for the 3D problems and the plate and shell problems by com-
bining the SaFEM with DSG method [74] to get rid of shear locking and to improve the accuracy of solutions. It is also prom-
ising to maintain accuracy in a local region and to improve the rough solution of strong discontinuities in fracture structures
by coupling the SaFEM with the extended finite element method (XFEM) [33–35,38].
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